Pandas

Data Manipulation in Python

Georgia
Tech

1/18



Pandas

» Built on NumPy
» Adds data structures and data manipulation tools

» Enables easier data cleaning and analysis

1 | import pandas as pd
2 |pd.set_option("display.width", 120)

That last line allows you to display DataFrames with many columns
without wrapping.

Georgia
Tech

27/18



Pandas Fundamentals

Three fundamental Pandas data structures:

P series - a one-dimensional array of values indexed by a pd.Index

» 1ndex - an array-like object used to access elements of a series
Or DataFrame

P DataFrame - a two-dimensional array with flexible row indices and
column names

Georgia
Tech

2/18



Series from List

©oO~NOOTHAWN -

[y

[uy

In [4]: data = pd.Series(['a','b','c','d'])

In [5]: data

Out [5]:
0 a
1 b
2 c
3 d

dtype: object

The 0..3 in the left column are the pd.Index for data:

In [7]: data.index
Out[7]: RangeIndex(start=0, stop=4, step=1)

The elements from the Python list we passed to the pd.series
constructor make up the values:

In [8]: data.values
Out[8]: array(['a', 'b', 'c', 'd'], dtype=object)

Georgia

Notice that the values are stored in a Numpy array.

Tech

a4/18



Series from Dictionary

O~NOOTA_WN -

©O~NOOOU A WN -

salary = {"Data Scientist": 110000,
"DevOps Engineer": 110000,
"Data Engineer": 106000,
"Analytics Manager": 112000,
"Database Administrator": 93000,
"Software Architect": 125000,
"Software Engineer": 101000,
"Supply Chain Manager": 100000}

Create a pd.Series from a dict:

In [14]: salary_data = pd.Series(salary)

In [15]: salary_data

Out[15]:

Analytics Manager 112000
Data Engineer 106000
Data Scientist 110000
Database Administrator 93000
DevOps Engineer 110000
Software Architect 125000
Software Engineer 101000

Supply Chain Manager 100000
dtype: int64

Georgia
Té%h

/18


https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm
https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm

Series with Custom Index
General form of Series constructor is pd.Series(data, index=index)
» Default is integer sequence for sequence data and sorted keys

of dictionaries
» Can provide a custom index:

In [29]: pd.Series([1,2,3], index=['a', 'b', 'c'])
Out [29]:

a 1

b 2

c 3

dtype: int64

DO~ WN -

The index object itself is an immutable array with set operations.

In [30]: il = pd.Index([1,2,3,4])
In [31]: i2 = pd.Index([3,4,5,6])

In [32]: i1[1:3]
Out[32]: Int64Index([2, 3], dtype='int64') Georgia

Tech
In [33]: i1l & i2 # intersection
Nutl’371: TntBATndex (R 41 dtvpe='inte4') 6/18

O 0 ~NOOTHWNH



Series Indexing and Slicing

~No o~ WN =

O~NOOTDWN =

Indexing feels like dictionary access due to flexible index objects

(download hotjobs.py to play along):

In [37]: data = pd.Series(['a', 'b', 'c', 'd'])

In [38]: datal[0]
Out[38]: 'a'

In [39]: salary_datal'Software Engineer']
Out [39]: 101000

But you can also slice using these flexible indices:

In [40]: salary_datal['Data Scientist':'Software Engineer']
Out [40] :

Data Scientist 110000

Database Administrator 93000

DevOps Engineer 110000

Software Architect 125000

Software Engineer 101000 .

dtvpe: i Georgia
ype: int64 T?ch

7 /18


../code/hotjobs.py

Basic DataFrame Structure

~NOoO O~ WN -

~NOoO O~ WN -

A DataFrame is a series Serieses with the same keys. For example,
consider the following dictionary of dictionaries meant to leverage
your experience with spreadsheets (in spreadsheet.py):

In [5]: import spreadsheet; spreadsheet.cells

Out [5]:

{'A': {1: 'A1', 2: 'A2', 3: 'A3'},
'B': {1: 'B1', 2: 'B2', 3: 'B3'},
s {1: 'ci', 2: 'C2', 3: 'C3'},
'D': {1: 'D1', 2: 'D2', 3: 'D3'}}

All of these dictionaries have the same keys, so we can pass this
dictionary of dictionaries to the DataFrame constructor:

In [7]: ss = pd.DataFrame(spreadsheet.cells); ss

Out[7]:

A B C D
1 A1 B1 Ci1 D1 Geor
2 A2 B2 C2 D2 Te

3 A3 B3 C3 D3

ia
Zh

Q/18


../code/spreadsheet.py

Basic DataFrame Structure

~NOoO A WN

~NOoO s WN

In [5]: import spreadsheet; spreadsheet.cells

Out [5]:

{'A': {1: 'A1', 2: 'A2', 3: 'A3'},
'B': {1: 'B1', 2: 'B2', 3: 'B3'},
'c': {1: 'Cc1', 2: 'C2', 3: 'C3'},
'D': {1: 'D1', 2: 'D2', 3: 'D3'}}

All of these dictionaries have the same keys, so we can pass this
dictionary of dictionaries to the DataFrame constructor:

In [7]: ss = pd.DataFrame(spreadsheet.cells); ss

Out [7]:

A B C D
1 A1 B1 Ci1 D1
2 A2 B2 C2 D2
3 A3 B3 C3 D3

» Each column is a Series whose keys (index) are the values
printed to the left (1, 2 and 3). Gegrgia

» Each row is a Series whose keys (index) are the column headers.
(o]



DataFrame Example

CO~NOOTDWNH

OO WN

Download hotjobs.py and do a %10ad hotjobs.py (to evaluate the code
in the top-level namespace instead of importing it).

In [42]: jobs = pd.DataFrame({'salary': salary, 'openings': openings})

In [43]: jobs

Out [43]:

openings salary

Analytics Manager 1958 112000

Data Engineer 2599 106000

Data Scientist 4184 110000

Database Administrator 2877 93000

DevOps Engineer 2725 110000

Software Architect 2232 125000

Software Engineer 17085 101000

Supply Chain Manager 1270 100000

UX Designer 1691 92500

In [46]: jobs.index

Out [46] :

Index(['Analytics Manager', 'Data Engineer', 'Data Scientist', gia
'Database Administrator', 'DevOps Engineer', 'Software Architect'.,rech
'Software Engineer', 'Supply Chain Manager', 'UX Designer'],

dtvpe='obiect') 10 /18


http://datamastery.gitlab.io/code/analytics/hotjobs.py

Simple DataFrame Indexing

Simplest indexing of DataFrame is by column name.

1 |In [48]: jobs['salary'l

2 | Out[48]:

3 | Analytics Manager 112000
4 |Data Engineer 106000
5 |Data Scientist 110000
6 |Database Administrator 93000
7 |DevOps Engineer 110000
8 |Software Architect 125000
9 |Software Engineer 101000
10 | Supply Chain Manager 100000
11 |UX Designer 92500
12 |Name: salary, dtype: int64

Each colum is a Series:

1 [In [49]: type(jobs['salary'])
2 | Out[49]: pandas.core.series.Series

G ia
Te%h

11 /18



General Row Indexing
The 10c indexer indexes by row name:

1 [In [13]: jobs.loc['Software Engineer']
2 |Out[13]:
3 | openings 17085
4 | salary 101000
5 |Name: Software Engineer, dtype: int64
6
7 |In [14]: jobs.loc['Data Engineer':'Databse Administrator']
8 |Out[14]:
9 openings salary
10 |Data Engineer 2599 106000
11 |Data Scientist 4184 110000
12 | Database Administrator 2877 93000
Note that slice ending is inclusive when indexing by name.
The iloc indexer indexes rows by position:
1 |In [15]: jobs.iloc[1:3]
2 | Out[15]:
3 i 1 Georgia
' openings salary Te%h
4 |Data Engineer 2599 106000
5 |Data Scientist 4184 110000
19 /18




Special Case Row Indexing

1 [In [16]: jobs[:2]

2 | Out[16]:

3

4 | Analytics Manager 1958 112000
5 |Data Engineer 2599 106000
6

7 |In [17]: jobs[jobs['salary'] > 100000]
8 | Out[17]:

9 openings

10 |Analytics Manager 1958

11 |Data Engineer 2599

12 |Data Scientist 4184

13 | DevOps Engineer 2725

14 | Software Architect 2232
15 | Software Engineer 17085

openings salary

salary
112000
106000
110000
110000
125000
101000

Try jobs['salary'] > 100000 by itself. What's happening in 1n[17]

above?

Georgia
Tech

12/18



10c and i1oc Indexing

©CoO~NOOOA~ WN -

The previous examples are shortcuts for 10c and iloc indexing:

In [20]: jobs.iloc[:2]
Out [20] :

openings salary
Analytics Manager 1958 112000

Data Engineer

In [21]: jobs.loc[jobs['salary'] > 100000]

Out[21]:

openings
Analytics Manager 1958
Data Engineer 2599
Data Scientist 4184
DevOps Engineer 2725

Software Architect 2232
Software Engineer 17085

2599 106000

salary
112000
106000
110000
110000
125000
101000

Georgia
Tech

14 /18



Aggregate Functions

The values in a series is a numpy.ndarray, S0 you can use NumPy
functions, broadcasting, etc.

> Average salary for all these jobs:

1 [In [14]: np.average(jobs['salary'])
2 | Out[14]: 107125.0

» Total number of openings:

1 |In [15]: np.sum(jobs['openings'])
2 | Out[15]: 34930

And so on.

Georgia
Tech

15 /18



Adding Column by Applying Ufuncs

[uy

In [25]: jobs['Percent Openings'l = jobs['openings']l /

np.sum(jobs['openings'])

In [26]: jobs

Out [26] :

openings
Analytics Manager 1958
Data Engineer 2599
Data Scientist 4184
Database Administrator 2877
DevOps Engineer 2725
Software Architect 2232
Software Engineer 17085
Supply Chain Manager 1270

salary DM Prepares Percent Openings
.056055
.074406
.119782
.082365
.078013
.063899
.489121
.036358

112000
106000
110000

93000
110000
125000
101000
100000

True
True
True
True
True
True
True
True

(el elNeNeNeNeNel

Georgia
Tech

16 /18



CSV Files

Pandas has a very powerful CSV reader. Do this in iPython (or
help(pd.read_csv) in the Python REPL)

1 |pd.read_csv? ‘

Georgia
Tech

17 /18



Read a CSV File into a DataFrame

Download credit-data:

©OO~NOOO A~ WN =

In [34]:
In [35]:
Out [35] :
age
0 64
1 78
2 38
3 29
4 94
5 95
6 61
7 21
8 33
9 96
10 83
11 32
12 49
13 49
14 79
15 90
16 40
17 61

credit = pd.read_csv("credit-data.csv")

credit

income approve

90
92
80
66
79
94
40
38
54
50
75
44
37
83
56
67
30
71

1
1
1
-1
1
1
-1
-1
-1
1
1
-1
-1
1
1
1
-1
1

Georgia
Tech

1 /18


../code/credit-data.csv

