
Pandas

Data Manipulation in Python

1 / 18



Pandas

I Built on NumPy
I Adds data structures and data manipulation tools
I Enables easier data cleaning and analysis

1 import pandas as pd
2 pd.set_option("display.width", 120)

That last line allows you to display DataFrames with many columns
without wrapping.

2 / 18



Pandas Fundamentals

Three fundamental Pandas data structures:
I Series - a one-dimensional array of values indexed by a pd.Index
I Index - an array-like object used to access elements of a Series

or DataFrame
I DataFrame - a two-dimensional array with flexible row indices and

column names

3 / 18



Series from List
1 In [4]: data = pd.Series(['a','b','c','d'])
2
3 In [5]: data
4 Out[5]:
5 0 a
6 1 b
7 2 c
8 3 d
9 dtype: object

The 0..3 in the left column are the pd.Index for data:

1 In [7]: data.index
2 Out[7]: RangeIndex(start=0, stop=4, step=1)

The elements from the Python list we passed to the pd.Series

constructor make up the values:

1 In [8]: data.values
2 Out[8]: array(['a', 'b', 'c', 'd'], dtype=object)

Notice that the values are stored in a Numpy array.
4 / 18



Series from Dictionary
1 salary = {"Data Scientist": 110000,
2 "DevOps Engineer": 110000,
3 "Data Engineer": 106000,
4 "Analytics Manager": 112000,
5 "Database Administrator": 93000,
6 "Software Architect": 125000,
7 "Software Engineer": 101000,
8 "Supply Chain Manager": 100000}

Create a pd.Series from a dict:

1 In [14]: salary_data = pd.Series(salary)
2
3 In [15]: salary_data
4 Out[15]:
5 Analytics Manager 112000
6 Data Engineer 106000
7 Data Scientist 110000
8 Database Administrator 93000
9 DevOps Engineer 110000

10 Software Architect 125000
11 Software Engineer 101000
12 Supply Chain Manager 100000
13 dtype: int64

The index is a sorted sequence of the keys of the dictionary passed
to pd.Series

[ˆ1] https://www.glassdoor.com/List/Best-Jobs-in-America-
LST_KQ0,20.htm.

5 / 18

https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm
https://www.glassdoor.com/List/Best-Jobs-in-America-LST_KQ0,20.htm


Series with Custom Index
General form of Series constructor is pd.Series(data, index=index)

I Default is integer sequence for sequence data and sorted keys
of dictionaries

I Can provide a custom index:

1 In [29]: pd.Series([1,2,3], index=['a', 'b', 'c'])
2 Out[29]:
3 a 1
4 b 2
5 c 3
6 dtype: int64

The index object itself is an immutable array with set operations.

1 In [30]: i1 = pd.Index([1,2,3,4])
2
3 In [31]: i2 = pd.Index([3,4,5,6])
4
5 In [32]: i1[1:3]
6 Out[32]: Int64Index([2, 3], dtype='int64')
7
8 In [33]: i1 & i2 # intersection
9 Out[33]: Int64Index([3, 4], dtype='int64')

10
11 In [34]: i1 | i2 # union
12 Out[34]: Int64Index([1, 2, 3, 4, 5, 6], dtype='int64')
13
14 In [35]: i1 ^ i2 # symmetric difference
15 Out[35]: Int64Index([1, 2, 5, 6], dtype='int64')

6 / 18



Series Indexing and Slicing
Indexing feels like dictionary access due to flexible index objects
(download hotjobs.py to play along):

1 In [37]: data = pd.Series(['a', 'b', 'c', 'd'])
2
3 In [38]: data[0]
4 Out[38]: 'a'
5
6 In [39]: salary_data['Software Engineer']
7 Out[39]: 101000

But you can also slice using these flexible indices:

1 In [40]: salary_data['Data Scientist':'Software Engineer']
2 Out[40]:
3 Data Scientist 110000
4 Database Administrator 93000
5 DevOps Engineer 110000
6 Software Architect 125000
7 Software Engineer 101000
8 dtype: int64

7 / 18

../code/hotjobs.py


Basic DataFrame Structure
A DataFrame is a series Serieses with the same keys. For example,
consider the following dictionary of dictionaries meant to leverage
your experience with spreadsheets (in spreadsheet.py):

1 In [5]: import spreadsheet; spreadsheet.cells
2
3 Out[5]:
4 {'A': {1: 'A1', 2: 'A2', 3: 'A3'},
5 'B': {1: 'B1', 2: 'B2', 3: 'B3'},
6 'C': {1: 'C1', 2: 'C2', 3: 'C3'},
7 'D': {1: 'D1', 2: 'D2', 3: 'D3'}}

All of these dictionaries have the same keys, so we can pass this
dictionary of dictionaries to the DataFrame constructor:

1 In [7]: ss = pd.DataFrame(spreadsheet.cells); ss
2
3 Out[7]:
4 A B C D
5 1 A1 B1 C1 D1
6 2 A2 B2 C2 D2
7 3 A3 B3 C3 D3

8 / 18

../code/spreadsheet.py


Basic DataFrame Structure
1 In [5]: import spreadsheet; spreadsheet.cells
2
3 Out[5]:
4 {'A': {1: 'A1', 2: 'A2', 3: 'A3'},
5 'B': {1: 'B1', 2: 'B2', 3: 'B3'},
6 'C': {1: 'C1', 2: 'C2', 3: 'C3'},
7 'D': {1: 'D1', 2: 'D2', 3: 'D3'}}

All of these dictionaries have the same keys, so we can pass this
dictionary of dictionaries to the DataFrame constructor:

1 In [7]: ss = pd.DataFrame(spreadsheet.cells); ss
2
3 Out[7]:
4 A B C D
5 1 A1 B1 C1 D1
6 2 A2 B2 C2 D2
7 3 A3 B3 C3 D3

I Each column is a Series whose keys (index) are the values
printed to the left (1, 2 and 3).

I Each row is a Series whose keys (index) are the column headers.
Try evaluating ss.columns and ss.index.

9 / 18



DataFrame Example
Download hotjobs.py and do a %load hotjobs.py (to evaluate the code
in the top-level namespace instead of importing it).

1 In [42]: jobs = pd.DataFrame({'salary': salary, 'openings': openings})
2
3 In [43]: jobs
4 Out[43]:
5 openings salary
6 Analytics Manager 1958 112000
7 Data Engineer 2599 106000
8 Data Scientist 4184 110000
9 Database Administrator 2877 93000

10 DevOps Engineer 2725 110000
11 Software Architect 2232 125000
12 Software Engineer 17085 101000
13 Supply Chain Manager 1270 100000
14 UX Designer 1691 92500

1 In [46]: jobs.index
2 Out[46]:
3 Index(['Analytics Manager', 'Data Engineer', 'Data Scientist',
4 'Database Administrator', 'DevOps Engineer', 'Software Architect',
5 'Software Engineer', 'Supply Chain Manager', 'UX Designer'],
6 dtype='object')
7
8 In [47]: jobs.columns
9 Out[47]: Index(['openings', 'salary'], dtype='object')

10 / 18

http://datamastery.gitlab.io/code/analytics/hotjobs.py


Simple DataFrame Indexing

Simplest indexing of DataFrame is by column name.

1 In [48]: jobs['salary']
2 Out[48]:
3 Analytics Manager 112000
4 Data Engineer 106000
5 Data Scientist 110000
6 Database Administrator 93000
7 DevOps Engineer 110000
8 Software Architect 125000
9 Software Engineer 101000

10 Supply Chain Manager 100000
11 UX Designer 92500
12 Name: salary, dtype: int64

Each colum is a Series:

1 In [49]: type(jobs['salary'])
2 Out[49]: pandas.core.series.Series

11 / 18



General Row Indexing
The loc indexer indexes by row name:

1 In [13]: jobs.loc['Software Engineer']
2 Out[13]:
3 openings 17085
4 salary 101000
5 Name: Software Engineer, dtype: int64
6
7 In [14]: jobs.loc['Data Engineer':'Databse Administrator']
8 Out[14]:
9 openings salary

10 Data Engineer 2599 106000
11 Data Scientist 4184 110000
12 Database Administrator 2877 93000

Note that slice ending is inclusive when indexing by name.
The iloc indexer indexes rows by position:

1 In [15]: jobs.iloc[1:3]
2 Out[15]:
3 openings salary
4 Data Engineer 2599 106000
5 Data Scientist 4184 110000

Note that slice ending is exclusive when indexing by integer position.
12 / 18



Special Case Row Indexing

1 In [16]: jobs[:2]
2 Out[16]:
3 openings salary
4 Analytics Manager 1958 112000
5 Data Engineer 2599 106000
6
7 In [17]: jobs[jobs['salary'] > 100000]
8 Out[17]:
9 openings salary

10 Analytics Manager 1958 112000
11 Data Engineer 2599 106000
12 Data Scientist 4184 110000
13 DevOps Engineer 2725 110000
14 Software Architect 2232 125000
15 Software Engineer 17085 101000

Try jobs['salary'] > 100000 by itself. What’s happening in In[17]

above?

13 / 18



loc and iloc Indexing

The previous examples are shortcuts for loc and iloc indexing:

1 In [20]: jobs.iloc[:2]
2 Out[20]:
3 openings salary
4 Analytics Manager 1958 112000
5 Data Engineer 2599 106000
6
7 In [21]: jobs.loc[jobs['salary'] > 100000]
8 Out[21]:
9 openings salary

10 Analytics Manager 1958 112000
11 Data Engineer 2599 106000
12 Data Scientist 4184 110000
13 DevOps Engineer 2725 110000
14 Software Architect 2232 125000
15 Software Engineer 17085 101000

14 / 18



Aggregate Functions

The values in a series is a numpy.ndarray, so you can use NumPy
functions, broadcasting, etc.
I Average salary for all these jobs:

1 In [14]: np.average(jobs['salary'])
2 Out[14]: 107125.0

I Total number of openings:

1 In [15]: np.sum(jobs['openings'])
2 Out[15]: 34930

And so on.

15 / 18



Adding Column by Applying Ufuncs

1 In [25]: jobs['Percent Openings'] = jobs['openings'] /
np.sum(jobs['openings'])

2
3 In [26]: jobs
4 Out[26]:
5 openings salary DM Prepares Percent Openings
6 Analytics Manager 1958 112000 True 0.056055
7 Data Engineer 2599 106000 True 0.074406
8 Data Scientist 4184 110000 True 0.119782
9 Database Administrator 2877 93000 True 0.082365

10 DevOps Engineer 2725 110000 True 0.078013
11 Software Architect 2232 125000 True 0.063899
12 Software Engineer 17085 101000 True 0.489121
13 Supply Chain Manager 1270 100000 True 0.036358

16 / 18



CSV Files

Pandas has a very powerful CSV reader. Do this in iPython (or
help(pd.read_csv) in the Python REPL):

1 pd.read_csv?

17 / 18



Read a CSV File into a DataFrame
Download credit-data:

1 In [34]: credit = pd.read_csv("credit-data.csv")
2
3 In [35]: credit
4 Out[35]:
5 age income approve
6 0 64 90 1
7 1 78 92 1
8 2 38 80 1
9 3 29 66 -1

10 4 94 79 1
11 5 95 94 1
12 6 61 40 -1
13 7 21 38 -1
14 8 33 54 -1
15 9 96 50 1
16 10 83 75 1
17 11 32 44 -1
18 12 49 37 -1
19 13 49 83 1
20 14 79 56 1
21 15 90 67 1
22 16 40 30 -1
23 17 61 71 1
24 18 21 53 -1
25 19 73 34 -1

18 / 18

../code/credit-data.csv

