
Error and Noise
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Error Measures

An error measure quantifies the performance of an h ∈ H, that is,
its agreement with the target function f .

Error = E (h, f )

The target function is unknown and we only have samples from it
(our data set, D), so we use a pointwise approximation.
Classification error is

e(h(~x), f (~x)) = Jh(~x) 6= f (~x)K

for some ~x , where J·K evaluates to 1 if argument is true, and to 0 if
it is false.
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Error Rate and Accuracy Rate

Given the previous pointwise definition of error, error rate within a
data set D can be defined as

E (h) = 1
N

N∑
n=1

Jh(~x) 6= f (~x)K

In other words, it’s the proportion of points in D that are
misclassified by h. If you turn the inequality above into an equality,
you have accuracy, that is, accuracy = 1− E . Some prefer to think
in terms of accuracy.
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Training Error and Test Error

The E we just defined is the error of our h in D, a set of samples
from X . The book refers to this quantity as in-sample error, or Ein.
I With our data set D we can only deal with Ein.
I What we really care about is Eout – how will our classifier

perform on any possible unseen ~x from X .
So in practice we separate our data set D into a training set and a
test set.
I Etrain is the error rate on our training set.
I Etest is the error rate on our test set.

We use Etest as an estimate of Eout . For this estimate to be
meaningful we must observe the most critical rule in practical
machine learning

You must not use any data from the test set during training.
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Cost

E can be thought of as the cost of using h instead of f (if you knew
f you’d just use f ). But the error measure we just defined might
not be enough. Consider the case of identification by fingerprint 1:

→ f →
{

+1you
−1not you

Is the cost of correctly identifying a person the same for all
applications?

1Fingerprint image by Cyrillic at the English language Wikipedia, CC BY-SA
3.0, https://commons.wikimedia.org/w/index.php?curid=3335963
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Kinds of Error

f
+1 -1

h +1
-1

no error false
negative

false positive
no error

Consider the following two kinds of applications:
I Customer identification for a supermarket discount program
I Identification for authorization to enter CIA building

Is the cost for each kind of error the same?
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Cost Matrix

We can capture the relative cost of each kind of error in a cost
matrix.

I Accidentally letting someone into the CIA building is 1000
times worse than accidentally rejecting someone

I A learning algorithm using a cost-weighted error function will
minimize the right kind of error
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Additional Error Metrics

Our earlier error function didn’t distinguish between different kinds
of errors – only misclassifications.
Let
I TP be the number of true positive predictions,
I TN be the number of true negative predictions,
I FP be the number of false positive predictions, and
I FN be the number of false negative predictions.

Then . . .
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Precision, Recall, F-measure

I Precision = TP
TP+FP

I If high, a positive prediction is likely correct (good for CIA
entry)

I Also called “hit rate”
I Recall = TP

TP+FN
I If high, missed few positives but maybe had some false positives
I Also called “false alarm rate”
I Good for cancer diagnosis - better to scare someone than to

miss an actual cancer
I F1− score = 2 · Precision·Recall

Precision+Recall
I If high, good precision and recall summarized in a single metric
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Confusion Matrix

We can calculate the error metrics from a confusion matrix. A
confusion matrix lists the counts of the different kinds of errors.
We’ve switched the positions of the true function, f , and our
learned hypothesis, h, to match the output of most machine
learning libraries.
Let’s say we run a simple linear discriminant analysis on the
Wisconsin Breast Cancer Diagnostic data set and get the following
confusoin matrix:

h
+1 -1

truth +1 48 7
-1 0 88
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https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29


Evaluating a Model using Precision, Recall, and F-measure
h
+1 -1

truth +1 48 7
-1 0 88

Using these values,
I Precision = TP

TP+FP = 48
48+0 = 1.0

I Recall = TP
TP+FN = 48

48+7 = 0.87
I F1− score = 2 · Precision·Recall

Precision+Recall = 2 · 1.0·0.87
1.0+0.87 = 0.93

Forget, for a moment, that this model was evaluated on a breast
cancer detection data set.
I For what kinds of applications would this be a good result?
I For what kinds of applications would this be a bad result?

BTW, the simple accuracy rate for this classifier would be
48+88

48+88+7 = 0.95
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ROC Curves
A receiver operating characteristics curve2, or ROC curve, plots the
tp-rate versus the fp-rate to show the tradeoffs of a particular model
on a particular data set. Here’s a ROC curve for a linear
discriminant analysis model on the breast cancer data:

How do we interpret a ROC curve? . . .
2http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.646.2144
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Interpreting ROC Curves

I A better ROC curve will “hug” the upper-left corner
I Area under the curve, or AUC, is a good single-number

measure of overall performance.
Calculating the previous metrics is straightforward, but plotting a
ROC curve requires internal data used by a model. Let’s see this in
code . . . 13 / 15

../code/breast_cancer.py


Closing Thoughts
I Error (aka cost, aka loss) is the difference between the true

target function and our hypothesis.
I We estimate the error with pointwise evaluations and a learning

algorithm may optimize this directly.
I We train a model using a training set and evaluate it (estimate

true error) by calculating error on a test set.
I There are two kinds of errors: false positives and false

negatives.
I We can characterize the cost of the different kinds of errors for

a particular application.
I Simple error or accuracy rate is a poor metric.
I We can count the true positives, false positives, true negatives

and false negatives in a classifiers predicitons on the test set.
I Using these counts we can calculate more fine-grained metrics

for evaluating a classifier.
I A ROC curve can give us a good general view of a classifier’s

general performance and tradeoffs.
and finally . . .
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The Golden Rule

We must never use test data for training.
I Ideally we’d have a test set unavailable to us (like in

competitions).
I In practice we split a data set into training and test sets during

model development
In case you missed it,

WE MUST NEVER USE TEST DATA FOR TRAINING.

15 / 15


