
Linear Classification

1 / 14

The Linear Model

In the next few lectures we will
I extend the perceptron learning algorithm to handle non-linearly

separable data,
I explore online versis batch learning,
I learn three different learning settings – classification, regression,

and probability estimation
I learn a fundamental concept in machine learning: gradient

descent
I see how the learning rate hyperparameter

2 / 14

The Linear Model

Recall that the linear model for binary classification is:

H = {h(~x) = sign(~wT · ~x)}

where

~w =

w0
w1
...

wd

 ∈ Rd+1 ~x =

1
x1
...

xd

 ∈ {1} × Rd

Where
I ~w ∈ Rd+1 where d is the dimensionality of the input space and

w0 is a bias weight, and
I x0 = 1 is fixed.

3 / 14

Perceptron Learning Algorithm
Recall the perceptron learning algorithm, slightly reworded:
INPUT: a data set D with each ~xi in D prepended with a 1, and
labels ~y
1. Initialize ~w = (w0,w1, ...,wd) with zeros or random values,

t = 1
2. Receive a ~xi ∈ D for which sign(~wT · ~x) 6= yi

I Update ~w using the update rule:
I ~w(t + 1)← ~w(t) + yi ~xi

I t ← t + 1
3. If there is still a ~xi ∈ D for which sign(~wT · ~x) 6= yi , repeat

Step 2.
TERMINATION: ~w is a line separating the two classes (assuming D
is linearly separable).
Notice that the algorithm only updates the model based on a single
sample. Such an algorithm is called an online learning algorithm.
Also remember that PLA requires that D be linearly separable.

4 / 14

Two Fundamental Goals In Learning

We have two fundamental goals with our learning algorithms:
I Make Eout(g) close to Ein(g)1. This means that our model will

generallize well. We’ll learn how to bound the difference when
we study computational learning theory.

I Make Ein(g) small. This means we have a model that fits the
data well, or performs well in its prediction task.

Let’s now discuss how to make Ein(g) small. We need to define
small and we need to deal with non-separable data.

1Remember that a version space is the set of all h in H consistent with our
training data. g is the particular h chosen by the algorithm.

5 / 14

Non-Separable Data
In practice perfectly linearly separable data is rare.

Figure 1: Figure 3.1 from Learning From Data

I Data set could include noise which prevents linear separablility.
I Data might be fundamentally non-linearly separable.

Today we’ll learn how to deal with the first case. In a few days we’ll
learn how to deal with the second case.

6 / 14

Minimizing the Error Rate
Earlier in the course we said that every machine learning problem
contains the following elements:
I An input ~x
I An unkown target function f : X → Y
I A data set D
I A learning model, which consists of

I a hypothesis class H from which our model comes,
I a loss function that quantifies the badness of our model, and
I a learning algorithm which optimizes the loss function.

Error, E , is another term for loss function. For the case of our
simple perceptron classifer we’re using 0-1 loss, that is, counting the
errors (or proportion thereof) and our optmization procedure tries to
find:

min
~w∈Rd+1

1
N

N∑
n=1

Jsign(~wT ~xn) 6= ynK

Let’s look at two modifications to the PLA that perform this
minimization.

7 / 14

Batch PLA 2

INPUT: a data set D with each ~xi in D prepended with a 1, labels
~y , ε – an error tolerance, and α – a learning rate
1. Initialize ~w = (w0,w1, ...,wd) with zeros or random values,

t = 1, ∆ = (0, ..0)
2. do

I For i = 1, 2, ...,N
I if sign(~wT · ~xi) 6= yi , then ∆← ∆ + yi ~xi
I ∆← ∆

N

I ~w ← ~w + α∆
while ||∆||2 > ε

TERMINATION: ~w is “close enough” a line separating the two
classes.

2Based on Alan Fern via Byron Boots
8 / 14

New Concepts in the Batch PLA Algorithm
1. Initialize ~w = (w0,w1, ...,wd) with zeros or random values,

t = 1, ∆ = (0, ..0)
2. do

I For i = 1, 2, ...,N
I if sign(~wT · ~xi) 6= yi , then ∆← ∆ + yi ~xi
I ∆← ∆

N

I ~w ← ~w + α∆
while ||∆||2 > ε

Notice a few new concepts in the batch PLA algorithm:
I the inner loop. This is a batch algorithm – it uses every sample

in the data set to update the model.
I the ε hyperparameter – our stopping condition is “good

enough”, i.e., within an error tolerance
I the α (also sometimes η) hyperparameter – the learning rate,

i.e., how much do we update the model in a given step.

9 / 14

Pocket Algorithm
Input: a data set D with each ~xi in D prepended with a 1, labels ~y ,
and T steps
1. Initialize ~w = (w0,w1, ...,wd) with zeros or random values,

t = 1, ∆ = (0, ..0)
2. for t = 1, 2, ...,T

I Run PLA for one update to obtain ~w(t + 1)
I Evaluate Ein(~w(t + 1))

I if Ein(~w(t + 1)) < Ein(~w(t)), then ~w ← ~w(t + 1)

3. On termination, ~w is the best line found in T steps.
Notice
I there is an inner loop under Step 2 to evaluate Ein. This is also

a batch algorithm – it uses every sample in the data set to
update the model.

I the T hyperparameter simply sets a hard limit on the number
of learning iterations we perform

10 / 14

Features

Remember that the target function we’re trying to learn has the
form f : X → Y, where X is typically a matrix of feature vectors
and Y is a vector of corresponding labels (classes). Consider the
problem of classifying images of hand-written digits:

What should the feature vector be?

11 / 14

Feature Engineering
Sometimes deriving descriptive features from raw data can improve
the performance of machine learning algorithms.

3

Here we project the 256 features of the digit images (more if you
consider pixel intensity) into a 2-dimensional space: average
intensity and symmetry.

3http://www.cs.rpi.edu/~magdon/courses/learn/slides.html
12 / 14

http://www.cs.rpi.edu/~magdon/courses/learn/slides.html

Multiclass Classification
We’ve only discussed binary classifers so far. How can we deal with
a multiclass problem, e.g., 10 digits?
I Some classifiers can do multi-class classification (e.g.,

multinomial logistic regression).
I Binary classifiers can be combined in a chain to handle

multiclass problems

This is a simple example of an ensemble, which we’ll discuss in
greater detail in the second half of the course.

13 / 14

Closing Thoughts

I Most data sets are not linearly separable
I We minimize some error, or loss function

I Learning algorithms learn in one of two modes:
I Online learning algorithm – model is updated after seeing one

training samples
I Batch learning algorithm – model is updated after seeing all

training samples
I We’ve now seen hyperparamters to tune the operation of

learning algorithms
I T or ε to bound the number of learning iterations
I A learning rate, α or η, to modulate the step size of the model

update performed in each iteration
I A multiclass classification problem can be solved by a chain of

binary classifiers

14 / 14

