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Decidability

I Computation
I Decidability – which problems have algorithmic solutions

I Machine Learning
I Feasibility – what assumptions must we make to trust that we

can learn an unknown target function from a sample data set
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Complexity

Complexity is a measure of efficiency. More efficient solutions use
fewer resources.
I Computation – resources are time and space

I Time complexity – as a function of problem size, n, how many
steps must an algorithm take to solve a problem

I Space complexity – how much memory does an algorithm need
I Machine learning – resource is data

I Sample complexity – how many training examples, m, are
needed so that with probability ≥ δ we can learn a classifier
with error rate lower than ε

Practically speaking, computational learning theory is about how
much data we need to
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Feasibility of Machine Learning

Machine learning is feasible if we adopt a probabilistic view of the
problem and make two assumptions:
I Our training samples are drawn from the same (unknown)

probability distribution as our test data, and
I Our training samples are drawn independently (with

replacement)
These assumptions are known as the i.i.d assumption – data samples
are independent and identically distributed (to the test data).
So in machine learning we use a data set of samples to make a
statement about a population.
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The Hoeffding Inequality

If we are trying to estimate some random variable µ by measuring ν
in a sample set, the Hoeffding inequality bounds the difference
between in-sample and out-of-sample error by

P[|ν − µ| > ε] ≥ 2e−2e2N

So as the number of our training samples increases, the probability
decreases that our in-sample measure ν will differ from the
population parameter µ it is estimating by some error tolerance ε.
The Hoeffding inequality depends only on N, but this holds only for
some parameter. In machine learning we are trying to estimate an
entire function.
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The Hoeffding Inequality in Machine Learning
In machine learning we’re trying to learn an h(~x) ∈ H that
approximates f : X → Y.
I In the learning setting the measure we’re trying to make a

statement about is error and
I we want a bound on the difference between in-sample error 1:

Ein(h) = 1
N

N∑
n=1

Jh(~x) 6= f (~x)K

and out-of-sample error:

Eout(h) = P[h(~x) 6= f (~x)]

So the Hoeffding inequality becomes

P[|Ein(h)− Eout(h)| > ε] ≤ 2e−2e2N

But this is the error for one hypothesis.
1JstatementK = 1 when statement is true, 0 otherwise. 6 / 22



Error of a Hypothesis Class
We need a bound for a hypothesis class. The union bound states
that if B1, ...,BM are any events,

P[B1, orB2, or , ..., orBM ] ≤
M∑

m=1
P[Bm]

For H with M hypotheses h1, ..., hM the union bound is:

P[|Ein(g)− Eout(g)| > ε] ≤
M∑

m=1
P[|Ein(h(m))− Eout(h(m))| > ε]

If we apply the Hoeffding inequality to each of the M hypotheses we
get:

P[|Ein(g)− Eout(g)| > ε] ≤ 2Me−2ε2N

We’ll return to the result later when we consider infinite hypothesis
classes. 7 / 22



ε-Exhausted Version Spaces

We could use the previous result to derive a formula for N, but
there is a more convenient framework based on version spaces.
Recall that a version space is the set of all hypotheses consistent
with the data.
I A version space is said to be ε-exhausted with respect to the

target function f and the data set D if every hypothesis in the
version space has error less than ε on D.

I Let |H| be the size of the hypothesis space.
I The probability that for a randomly chosen D of size N the

version space is not ε-exhausted is less than

|H|−εN
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Bounding the Error for Finite H

|H|−εN is an upper bound on the failure rate of our hypothesis class,
that is, the probablility that we won’t find hypothesis that has error
less than ε on D. If we want this failure rate to be no greater than
some δ, then

|H|−εN ≤ δ

And solving for N we get

N ≥ 1
ε

(ln |H|+ ln 1
δ

)
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PAC Learning for Finite H

The PAC learning formula

N ≥ 1
ε

(ln |H|+ ln 1
δ

)

means that we need at least N training samples to guarantee that
we will learn a hypothesis that will
I probably, with probability 1− δ be
I approximately, within error ε
I correct.

Notice that N grows
I linearly in 1

ε ,
I logarithmically in 1

δ , and
I logarithmically in |H|.
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PAC Learning Example

Consider a hypothesis class of boolean literals. You have variables
like tall, glasses, etc., and the hypothesis class represents whether a
person will get a date. How many examples of people who did and
did not get dates do you need to learn with 95% probability a
hypothesis that has error no greater than .1
First, what’s the size of the hypothesis class? For each of the
variables there are three possibilities: true, false, and don’t care. For
example, one hypothesis for variables tall , glasses, longHair might
be:

tall ∧ ¬glasses ∧ true

Meaning that you must be tall and not wear glasses to get a date
but it doesn’t matter if your hair is long.
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PAC Learning Example

Since there are three values for each variable the size of the
hypothesis class is

3d

If we have 10 variables then

N ≥ 1
ε

(ln |H|+ ln 1
δ

) = 1
.1(ln 310 + ln 1

.05) = 140
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Dichotomies

Returning to

P[|Ein(g)− Eout(g)| > ε] ≤ 2Me−2ε2N

Where M is the size of the hypothesis class (also sometimes written
|H|). For infinite hypothesis classes, this won’t work. What we need
is an effective number of hypotheses.
Diversity of H is captured by idea of dichotomies. For a binary
target function, there are many h ∈ H that produce the same
assignments of labels. We groupo these into dichotomies.
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Effective Number of Hypotheses
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Growth Function
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Shattering
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VC Dimension

The VC-dimendion dVC of a hypothesis set H is the largest N for
which mH(N) = 2N .
Another way to put it: VC-dimension is the maximum number of
points in a data set for which you can arrange the points in such a
way that H shatters those points for any labellings of the points.
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VC Bound

For a confidence δ > 0, the VC generalization bound is:

Eout(g) ≤ Ein(g) +

√
8
N ln 4mH(2N)

δ

If we use a polynomial bound on dVC :

Eout(g) ≤ Ein(g) +

√√√√ 8
N ln

(
4((2N)dVC − 1

δ

)
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VC Bound and Sample Complexity
For an error tolerance ε > 0 (our max acceptable difference between
Ein and Eout) and a confidence δ > 0, we can compute the sample
complexity of an infinite hypothesis class by:

N ≥ 8
ε2

ln
(
4((2N)dVC + 1

δ

)

Note that N appears on both sides, so we need to solve for N
iteratively. See colt.sc for an example.
If we have a learning model with dVC = 3 and want a generalization
error at most ε = 0.1 and a confidence of 90% (δ = 0.05), we get
N = 29299
I If we try higher values for dVC , N ≈ 10000dVC , which is a

gross overestimate.
I Rule of thumb: you need 10dVC training examples to get

decent generalization.
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VC Bound as a Penalty for Model Complexity
You can use the VC bound to estimate the number of training
samples you need, but you typically just get a data set – you’re
given an N.
I Question becomes: how well can we learn from the data given

this data set?
If we plug values into:

Eout(g) ≤ Ein(g) +

√√√√ 8
N ln

(
4((2N)dVC − 1

δ

)

For N = 1000 and δ = 0.1 we get
I If dvc = 1, error bound = 0.09
I If dvc = 2, error bound = 0.15
I If dvc = 3, error bound = 0.21
I If dvc = 4, error bound = 0.27
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Appoximation-Generalization Tradeoff

The VC bound can be seen as a penalty for model complexity. For a
more complex H (larger dVC ), we get a larger generalization error.
I If H is too simple, it may not be able to approximate f .
I If H is too complex, it may not generalize well.

This tradeoff is captured in a conceptual framework called the
bias-variance decomposition which uses squared-error to decompose
the error into two terms:

ED = bias + var

Which is a statement about a particular hypothesis class over all
data sets, not just a particular data set.
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Bias-Variance Tradeoff

I H1 (on the left) are lines of the form h(x) = b – high bias, low
variance

I H2 (on the right) are lines of the form h(x) = ax + b – low
bias, high variance

Total error is a sum of errors from bias and variance, and as one
goes up the other goes down. Try to find the right balance. We’ll
learn techniques for finding this balance.
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