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Numerical Python

Provides efficient storage and operations on dense data buffers, i.e.,
arrays.
I ndarray is the fundamental object
I Vectorized operations on arrays
I Broadcasting
I File IO amd memory-mapped files

1 In [1]: import numpy as np
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NumPy Array Element Types

Arrays have elements of homogeneous data type

1 In [2]: a = np.array([1, 2, 3.14])
2
3 In [3]: type(a)
4 Out[3]: numpy.ndarray
5
6 In [4]: a
7 Out[4]: array([ 1. , 2. , 3.14])
8
9 In [5]: type(a[0])

10 Out[5]: numpy.float64

I Notice that the values were converted to floats.
You can specify an explicit element type with the dtype keyword
argument:

1 In [6]: np.array(nums, dtype='int')
2 Out[6]: array([1, 2, 3])
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One-dimensional Arrays

Pass list to np.array():

1 In [9]: np.array([1,2,3])
2 Out[9]:
3 array([1, 2, 3])

Create a one-dimensional array of zeros, dtype defaults to float:

1 In [10]: np.zeros(4)
2 Out[10]: array([ 0., 0., 0., 0.])

np.arange similar to Python’s built-in range(start, end, stride):

1 In [13]: np.arange(0, 10, 2)
2 Out[13]: array([0, 2, 4, 6, 8])
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Multi-Dimensional Arrays
Passing nested lists to np.array() create multi-dimensional arrays:

1 In [9]: np.array([[1,2,3],[4,5,6]])
2 Out[9]:
3 array([[1, 2, 3],
4 [4, 5, 6]])

Create a multi-dimensional array of 1s with element type int. Note
that first argument is a tuple of array dimensions.

1 In [11]: np.ones((2, 3), dtype=int)
2 Out[11]:
3 array([[1, 1, 1],
4 [1, 1, 1]])

Create a 2-d array of the same element values:

1 In [12]: np.full((2, 3), 2.72)
2 Out[12]:
3 array([[ 2.72, 2.72, 2.72],
4 [ 2.72, 2.72, 2.72]])
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Creating Arrays of Random Numbers
Creat a 2 x 3 array of values uniformly distributed between 0 and 1:

1 In [28]: np.random.random((2, 3))
2 Out[28]:
3 array([[ 0.93923457, 0.41299137, 0.07451052],
4 [ 0.32800936, 0.44435825, 0.4520937 ]])

Normally distributed with µ = 71.36 and σ = 14.79:

1 In [26]: np.random.normal(71.36, 14.79, (2, 3))
2 Out[26]:
3 array([[ 71.24362489, 61.05019638, 72.25408014],
4 [ 63.03759916, 70.64992342, 75.94207076]])

Create a 2 x 3 array of int values in the interval [1, 11):

1 In [29]: np.random.randint(1, 11, (2, 3))
2 Out[29]:
3 array([[9, 8, 6],
4 [9, 5, 9]])

3-d identity matrix:

1 In [31]: np.identity(3)
2 Out[31]:
3 array([[ 1., 0., 0.],
4 [ 0., 1., 0.],
5 [ 0., 0., 1.]])
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NumPy Array Attributes
Given:

1 In [33]: a = np.array([[1,2,3], [4,5,6]])
2
3 In [34]: a
4 Out[34]:
5 array([[1, 2, 3],
6 [4, 5, 6]])

ndim is the number of dimensions:

1 In [37]: a.ndim
2 Out[37]: 2

shape is a tuple giving the number of elements in each dimension:

1 In [35]: a.shape
2 Out[35]: (2, 3)

dtype is the type of the elements

1 In [36]: a.dtype
2 Out[36]: dtype('int64')
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1-D Array Indexing and Slicing
1-d arrays similar to Python lists:

1 In [41]: a1 = np.arange(10)
2
3 In [44]: a1[1]
4 Out[44]: 1
5
6 In [45]: a1[-1]
7 Out[45]: 9
8
9 In [46]: a1[2:5]

10 Out[46]: array([2, 3, 4])

Assignment of single value to a (sub)range /broadcasts/ the value
to the (sub)range:

1 In [47]: a1[2:5] = 11
2
3 In [48]: a1
4 Out[48]: array([ 0, 1, 11, 11, 11, 5, 6, 7, 8, 9])

Notice that the original array is modified.
8 / 20



2-D Array Indexing and Slicing
Given:

1 In [49]: a3 = np.array([[1,2,3],[4,5,6],[7,8,9]])
2
3 In [50]: a3
4 Out[50]:
5 array([[1, 2, 3],
6 [4, 5, 6],
7 [7, 8, 9]])

Single scalar value:

1 In [51]: a3[1,1]
2 Out[51]: 5

Subarray:

1 In [52]: a3[1:, 1:]
2 Out[52]:
3 array([[5, 6],
4 [8, 9]])

Single column:

1 In [53]: a3[:, 2]
2 Out[53]: array([3, 6, 9])

Single row:

1 In [54]: a3[2, :]
2 Out[54]: array([7, 8, 9])

Notice that first index is row, second index is column.

9 / 20



Array Reshaping

2-d arrays

1 In [62]: a3 = np.arange(1, 13)
2
3 In [63]: a3
4 Out[63]: array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
5
6 In [64]: a3.reshape(3, 4)
7 Out[64]:
8 array([[ 1, 2, 3, 4],
9 [ 5, 6, 7, 8],

10 [ 9, 10, 11, 12]])
11
12 In [65]: a3.reshape(4, 3)
13 Out[65]:
14 array([[ 1, 2, 3],
15 [ 4, 5, 6],
16 [ 7, 8, 9],
17 [10, 11, 12]])
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Python is slow
I Consider an array representing pixels of a “one megapixel”

image:

1 In [20]: image = np.random.randint(0, 256, (1000000, 3))

I This is a deep underwater image which looks very green and we
want to increase the “blueness” by 10% [fn:1]. So we write a
function to mutiply pixel elements by a factor:

1 In [60]: def mult_elem(image, n, factor):
2 ...: for i in range(len(image)):
3 ...: image[i][n] = image[i][n] * factor

I This operation is slow:

1 In [61]: %timeit mult_elem(image, 2, 1.10)
2 1.85 s +/- 16.8 ms per loop (mean +/- std. dev. of 7 runs, 1 loop each)

I The equivalent vectorized opertation is /300 times faster/:

1 In [62]: %timeit image[:, 2] = image[:, 2] * 1.10
2 6.23 ms +/- .0693 ms per loop (mean +/- std. dev. of 7 runs, 100 loops

each)

[fn:1] I’m not a graphics guy, so just indulge me here.
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Vectorized Operations on Arrays
Operations between compatibly-shaped arrays or between arrays and
scalars are vectorized – the loop applying the operations to elements
of the array(s) is in the compiled C-code layer instead of Python.

1 In [114]: np.arange(2, 20, 2) / np.arange(1, 10)
2 Out[114]: array([ 2., 2., 2., 2., 2., 2., 2., 2., 2.])

Smaller array is “broadcast” across the larger array. The simplest
example is when the smaller array is a scalar value:

1 In [108]: a = np.arange(9)
2
3 In [110]: 2 ## a
4 Out[110]: array([ 1, 2, 4, 8, 16, 32, 64, 128, 256])
5
6 In [111]: 2 ## a.reshape((3, 3))
7 Out[111]:
8 array([[ 1, 2, 4],
9 [ 8, 16, 32],

10 [ 64, 128, 256]])

General braodcasting between multi-dimensional arrays is beyond
the scope of this course. See the NumPy docs for details. 12 / 20

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html


Masking
First, boolean indexing: you can use a like-shaped array of bools to
index into an array, which selects items from the array. The arrays
of bools is called a /mask/ and using it to select elements is called
/masking/.

1 In [175]: xs = np.array([0,1,2,3,4,5,6,7,8,9])
2
3 In [177]: xs[[True, False, True, False, True, False, True, False, True,

False]]
4 Out[177]: array([0, 2, 4, 6, 8])

Since you can create arrays of bools easily with comparison ufuncs,
you can combine boolean indexing with broadcasting to easily mask
an array:

1 In [179]: xs[(xs % 2) == 0]
2 Out[179]: array([0, 2, 4, 6, 8])

The comparison operation above is a boolean universal function.
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Boolean UFuncs
Broadcast boolean expressions just like arithmetic expressions:

1 In [163]: exam1scores = np.loadtxt('exam1grades.txt')
2
3 In [164]: exam1scores
4 Out[164]:
5 array([ 72., 72., 50., 65., 60., 73., 93., 88., 97., ...
6 84., 75., 88., 75., 86., 49., 65., 69., 87.])

How many people “passed”? First, you can apply a comparison
operator to an array to get an array of boooleans:

1 In [165]: exam1scores > 70
2 Out[165]:
3 array([ True, True, False, False, False, True, True, True, True, ...
4 True, True, True, True, True, False, False, False, True],

dtype=bool)

Then you can apply the np.sum aggregation function to count the
booleans in the resulting array of booleans:

1 In [169]: np.sum(exam1scores > 70)
2 Out[169]: 77 14 / 20



Boolean UFuncs

You can also combine comparisons with logical operators. How
many Bs?

1 In [173]: np.sum((exam1scores >= 80) & (exam1scores < 90))
2 Out[173]: 27

Note the syntax with single & – NumPy uses efficient bitwise logical
operators.
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Array Aggregations

1 In [117]: np.arange(10).sum()
2 Out[117]: 45
3
4 In [119]: np.array([8,6,7,5,3,0,9]).min()
5 Out[119]: 0
6
7 In [120]: np.array([8,6,7,5,3,0,9]).max()
8 Out[120]: 9

16 / 20



2-D Aggregations
1 In [131]: np.arange(9).reshape(3,3)
2 Out[131]:
3 array([[0, 1, 2],
4 [3, 4, 5],
5 [6, 7, 8]])

We can summarize the values of each column,

1 In [132]: np.arange(9).reshape(3,3).min(axis=0)
2 Out[132]: array([0, 1, 2])
3
4 In [133]: np.arange(9).reshape(3,3).max(axis=0)
5 Out[133]: array([6, 7, 8])

or summarize the values in each row:

1 In [134]: np.arange(9).reshape(3,3).min(axis=1)
2 Out[134]: array([0, 3, 6])
3
4 In [135]: np.arange(9).reshape(3,3).max(axis=1)
5 Out[135]: array([2, 5, 8])

Note that axis here means dimension to be collapsed. So axis 0
means we collapse the rows into one array by aplying the
aggregation function by column.

17 / 20



Missing Data
Missing array elements represented as np.nan values.

1 In [86]: xs = np.array([2, 3, 4, np.nan])
2
3 In [87]: np.mean(xs)
4 Out[87]: nan

Ways to handle missing values:
I Manually masking with np.isnan

1 In [90]: np.mean(xs[[not np.isnan(x) for x in xs]])
2 Out[90]: 3.0

I Masking using the numpy.ma module.

1 In [92]: np.ma.masked_invalid(xs).mean()
2 Out[92]: 3.0

I Using NaN-ignoring aggregates:

1 In [93]: np.nanmean(xs)
2 Out[93]: 3.0

Pandas gives you a few more options, but these cover many cases
that come up in practice.
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np.where

np.where(cond, true_result, false_result) is a vectorized version of
Python’s ternary if-else expression.
Here, we double all the even numbers:

1 In [12]: a = np.array([[1,2,3], [4,5,6], [7,8,9]])
2
3 In [14]: a
4 Out[14]:
5 array([[1, 2, 3],
6 [4, 5, 6],
7 [7, 8, 9]])
8
9 In [15]: np.where((a % 2) == 0, a * 2, a)

10 Out[15]:
11 array([[ 1, 4, 3],
12 [ 8, 5, 12],
13 [ 7, 16, 9]])

Exercise: do that operation above using basic Python on a list of
lists.
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Closing Thoughts

Key ideas of NumPy:
I In-memory arrays of elements with the same data type
I Static typing of arrays together with vectorized operations of

universal functions provide dramatic speed up over equivalent
Python code

I Ufuncs combined with with boolean masks makes it easy to
partition data

I Aggregate functions make it easy to summarize data
NumPy is the foundation of the SciPy stack. Even when we don’t
use it directly (which we often will), it’s there underneath the hood.
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