NumPy

Georgia
Tech

1/20

Numerical Python

Provides efficient storage and operations on dense data buffers, i.e.,
arrays.

P ndarray is the fundamental object
» Vectorized operations on arrays
» Broadcasting

» File IO amd memory-mapped files

1 [In [1]: import numpy as np

Georgia
Tech

2 /90

NumPy Array Element Types

Arrays have elements of homogeneous data type

In [5]: type(al0])
Out[5]: numpy.float64

1 |In [2]): a = np.array([1, 2, 3.14])
2

3 |In [3]: type(a)

4 |0Out[3]: numpy.ndarray

5

6 |In [4]: a

7 |Out[4]: array([1. , 2. , 3.14])
8

9

0

[y

» Notice that the values were converted to floats.

You can specify an explicit element type with the datype keyword
argument:

[u—y

In [6]: np.array(nums, dtype='int')
2 | Out[6]: array([1, 2, 3])

Georgia
Fozh

2/20

One-dimensional Arrays

N =

[y

[uny

Pass list to np.array(:

In [9]: np.array([1,2,3])
Out[9]:
array([1, 2, 31)

Create a one-dimensional array of zeros, datype defaults to fioat:

In [10]: np.zeros(4)
Out[10]: array([0., 0., 0., 0.])

np.arange similar to Python's built-in range(start, end, stride):

In [13]: np.arange(0, 10, 2)
Out[13]: array([0, 2, 4, 6, 8])

Georgia
Tech

a4 /20

Multi-Dimensional Arrays

Passing nested lists to np.array() create multi-dimensional arrays:

1 [In [9]: np.array([[1,2,3],[4,5,6]11)
2 | Out[9]:
3 |array([[1, 2, 3],
4 4, 5, 611
Create a multi-dimensional array of 1s with element type int. Note
that first argument is a tuple of array dimensions.
1 |In [11]: np.ones((2, 3), dtype=int)
2 |Out[11]:
3 |array([[1, 1, 11,
4 [1, 1, 11D
Create a 2-d array of the same element values:
1 |In [12]: np.full((2, 3), 2.72)
2 | Out[12]:
3 |array([[2.72, 2.72, 2.72], Georgia
4 [2.72, 2.72, 2.7211) Tech

5 /20

Creating Arrays of Random Numbers
Creat a 2 x 3 array of values uniformly distributed between 0 and 1:

1 |In [28]: np.random.random((2, 3))

2 |Out[28]:

3 |array([[0.93923457, 0.41299137, 0.07451052],

4 [0.32800936, 0.44435825, 0.4520937 1])
Normally distributed with y = 71.36 and o = 14.79:

1 [In [26]: np.random.normal(71.36, 14.79, (2, 3))

2 |Out[26]:

3 |array([[71.24362489, 61.05019638, 72.25408014],

4 [63.03759916, 70.64992342, 75.94207076]])
Create a 2 x 3 array of int values in the interval [1, 11):

1 |In [29]: np.random.randint(1l, 11, (2, 3))

2 | Out[29]:

3 |array([[9, 8, 6],

4 [9, 5, 91D

. . . Georgia
3-d identity matrix: Tech

P 1 6 /90

NumPy Array Attributes

Given:
1 |In [33]: a = np.array([[1,2,3], [4,5,61])
2
3 [In [34]: a
4 |0ut[34]:
5 |array([[1, 2, 3],
6 [4, 5, 611)
ndim is the number of dimensions:
1 |In [37]: a.ndim
2 |[0ut[37]: 2

shape is a tuple giving the number of elements in each dimension:

1 |In [35]: a.shape
2 | Out[35]: (2, 3)

dtype is the type of the elements

1 |In [36]: a.dtype
2 |Out[36]: dtype('int64')

Georgia
Tech

7 /20

1-D Array Indexing and Slicing

QWO ~NOO A~ WNH

[y

A~ W N =

1-d arrays similar to Python lists:

In [41]:

In [44]:
Out [44] :

In [45]:
Out [45] :

In [46]:
Out [46] :

al = np.arange(10)

ai[1]
1

al[-1]
9

a1[2:5]
array([2, 3, 4])

Assignment of single value to a (sub)range /broadcasts/ the value
to the (sub)range:

In [47]: a1[2:5] = 11
In [48]: a1l
Out[48]: array([O, 1, 11, 11, 11, 5, 6, 7, 8, 9])
G gia
Tech

Notice that the original array is modified.

Q /90

2-D Array Indexing and Slicing

Given:

In [50]: a3

Out [50] :

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 911

~NOoO O~ WN -

In [49]: a3 = np.array([[1,2,3],[4,5,6]1,[7,8,911)

Single scalar value:

1 |[In [51]: a3[1,1]
2 |[Out[51]: 5

Subarray:

In [52]: a3[1:, 1:]
Out [62] :
array([[5, 6],

[8, 911)

AW

Single column:

Geor
Te

ia
Zh

0/20

Array Reshaping

2-d arrays
1 |In [62]: a3 = np.arange(l, 13)
2
3 |In [63]: a3
4 |Outl63]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
5
6 | In [64]: a3.reshape(3, 4)
7 |Out[64]:
8 |array([[1, 2, 3, 4],
9 [5, 6, 7, 8],
10 [9, 10, 11, 12]11)
11
12 |In [65]: a3.reshape(4, 3)
13 | Out[65]:
14 |array([[1, 2, 3],
15 [4, 5, 6],
16 [7, 8, 9],
17 [10, 11, 12]11)

Georgia
Tech

10 / 20

Python is slow
» Consider an array representing pixels of a “one megapixel”
image:

1 ‘In [20]: image = np.random.randint(0, 256, (1000000, 3))

» This is a deep underwater image which looks very green and we
want to increase the "blueness” by 10% [fn:1]. So we write a
function to mutiply pixel elements by a factor:

1 [In [60]: def mult_elem(image, n, factor):
2 for i in range(len(image)):
3 e image[i]l [n] = imagel[il[n] * factor
» This operation is slow:
1 [In [61]: %timeit mult_elem(image, 2, 1.10)
2 [1.85 s +/- 16.8 ms per loop (mean +/- std. dev. of 7 runs, 1 loop each)

» The equivalent vectorized opertation is /300 times faster/:
Georgiﬁ
Cl

1 |In [62]: Ytimeit imagel[:, 2] = imagel[:, 2] * 1.10
2 |6.23 ms +/- .0693 ms per loop (mean +/- std. dev. of 7 runs, 100 loops

11 /20

Vectorized Operations on Arrays

[uny

CWOVWWU~NOO A WNHH

[y

Operations between compatibly-shaped arrays or between arrays and
scalars are vectorized — the loop applying the operations to elements
of the array(s) is in the compiled C-code layer instead of Python.

In [114]: np.arange(2, 20, 2) / np.arange(1l, 10)

Out[114]: array([2., 2., 2., 2., 2., 2., 2., 2., 2.1

Smaller array is “broadcast” across the larger array. The simplest
example is when the smaller array is a scalar value:

In [108]: a = np.arange(9)

In [110]:
Out[110]:

In [111]:
Out[111]:

2 ## a
array([1,

2,

4,

8,

2 ## a.reshape((3, 3))

array([[1,
[s,

2,
16,

4] s
32],

16,

32,

64, 128, 256])

[64, 128, 256]1)

Geor

General braodcasting between multi-dimensional arrays is beyond

+he ccane Af thic ~Aatirce Saa +the Niim Py AAace fAr AetAaile

gia

Tech

12 /20

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Masking

N

[uny

First, boolean indexing: you can use a like-shaped array of bools to
index into an array, which selects items from the array. The arrays
of bools is called a /mask/ and using it to select elements is called
/masking/.

In [175]: xs = np.array([0,1,2,3,4,5,6,7,8,9])

In [177]: xs[[True, False, True, False, True, False, True, False, True,
False]]
Out[177]: array([O0, 2, 4, 6, 81)

Since you can create arrays of bools easily with comparison ufuncs,
you can combine boolean indexing with broadcasting to easily mask
an array:

In [179]: xs[(xs % 2) == 0]
Out[179]: array([O0, 2, 4, 6, 8])

The comparison operation above is a boolean universal functiof?®Lia

12 /20

Boolean UFuncs
Broadcast boolean expressions just like arithmetic expressions:

1 |In [163]: examlscores = np.loadtxt('examligrades.txt')
2
3 | In [164]: examlscores
4 | Out[164]:
5 |array([72., 72., 50., 65., 60., 73., 93., 88., 97., ...
6 84., 75., 88., 75., 86., 49., 65., 69., 87.1)
How many people “passed”? First, you can apply a comparison
operator to an array to get an array of boooleans:
1 |In [165]: examlscores > 70
2 |Out[165]:
3 |array([True, True, False, False, False, True, True, True, True,
4 True, True, True, True, True, False, False, False, True],
dtype=bool)
Then you can apply the np.sun aggregation function to count the
booleans in the resulting array of booleans:
Georgia
ch
1 |In [169]: np.sum(examlscores > 70)
2 |Out[169]: 77

14 /20

Boolean UFuncs

[uy

You can also combine comparisons with logical operators. How

many Bs?

In [173]: np.sum((examlscores >= 80) & (examlscores < 90))
Out[173]: 27

Note the syntax with single & — NumPy uses efficient bitwise logical

operators.

Georgia
Tech

15 /20

Array Aggregations

O~NOOTDWN -

In [117]:
Out[117]:

In [119]:
Out[119]:

In [120]:
Out [120]:

np.arange(10) .sum()
45

np.array([8,6,7,5,3,0,9]) .min()
0

np.array([8,6,7,5,3,0,9]) .max()
9

Georgia
Tech

16 /20

2-D Aggregations

GO~ WN - a s wWN R

a s WN R

In [131]: np.arange(9).reshape(3,3)

Out[131]:

array([[0, 1, 2],
[3, 4, 5],
[6, 7, 811)

We can summarize the values of each column,

In [132]:
Out [132]:

In [133]:
Out [133]:

np.arange (9)
array ([0, 1,

np.arange(9)
array([6, 7,

.reshape(3,3) .min(axis=0)

2D

.reshape(3,3) .max(axis=0)

81)

or summarize the values in each row:

In [134]:
Out[134]:

In [135]:
Out [135]:

np.arange(9)
array ([0, 3,

np.arange (9)
array([2, 5,

.reshape(3,3) .min(axis=1)

61)

.reshape (3,3) .max (axis=1)

81)

Geor

Note that axis here means dimension to be collapsed. So axis 0

gia

Tech

17 /20

Missing Data

A OWN R

[uny

Missing array elements represented as np.nan values.

In [86]: xs = np.array([2, 3, 4, np.nan])

In [87]: np.mean(xs)
Out[87]: nan

Ways to handle missing values:

» Manually masking with np.isnan

In [90]: np.mean(xs[[not np.isnan(x) for x in xs]])
Out[90]: 3.0

» Masking using the numpy.ma module.

In [92]: np.ma.masked_invalid(xs).mean()
Out[92]: 3.0

» Using NaN-ignoring aggregates:

gia
In [93]: np.nanmean(xs) Tech
Out[93]: 3.0

12 /90

https://docs.scipy.org/doc/numpy-1.13.0/reference/maskedarray.generic.html

np.where

©OO~NOOTHA~WN -

np.where(cond, true_result, false_result) is a vectorized version Of

Python's ternary if-else expression.

Here, we double all the even numbers:

In [12]: a = np.array([[1,2,3], [4,5,6], [7,8,9]11)

In [14]: a

Out[14]:

array([[1, 2, 3],
[4, 5, 6],
[7, 8, 911)

In [15]: np.where((a % 2) == 0, a * 2, a)
Out[15]:
array([[1, 4, 3],

[8, 5, 12],

[7, 16, 911)

Exercise: do that operation above using basic Python on a list of

lists.

Georgia
Tech

10 /20

Closing Thoughts

Key ideas of NumPy:

» In-memory arrays of elements with the same data type

> Static typing of arrays together with vectorized operations of
universal functions provide dramatic speed up over equivalent
Python code

» Ufuncs combined with with boolean masks makes it easy to
partition data
> Aggregate functions make it easy to summarize data
NumPy is the foundation of the SciPy stack. Even when we don’t
use it directly (which we often will), it's there underneath the hood.

Georgia
Tech

20 /20

